Synthesis of 1,2-Dihydroisoquinoline-3-carbaldehydes

Gyula Simig*
Institute de chimie organique de I'Université, Rue de la Barre 2, 1005 Lausanne, Switzerland
ortho-Formylation of \boldsymbol{N}-(2,2-diethoxyethyl)benzylamines followed by acid-catalyzed cyclisation leads to 1,2-dihydroisoquinoline-3-carbaldehydes.

Lithiation of N-(2,2-diethoxyethyl)benzylamine 1, followed by reactions of aryllithium 2 with electrophiles and subsequent cyclisation of intermediates 3 with 20% aqueous hydrochloric acid, afforded 1,2,3,4-tetrahydroisoquinolin-4-ols 4 having various carbo- and hetero-functional groups (e.g. $\mathrm{Me}, \mathrm{CH}_{2} \mathrm{OH}$, $\mathrm{SMe}, \mathrm{Cl}, \mathrm{Br}, \mathrm{I}$) in the 8 -position ${ }^{1}$ (Scheme 1).

Scheme 1 Reagents: i, BuLi; ii, RX: MeI, $\mathrm{CH}_{2} \mathrm{O},(\mathrm{MeS})_{2}, \mathrm{Cl}_{3} \mathrm{C}-\mathrm{CCl}_{3}$, $\mathrm{Br}_{2}, \mathrm{I}_{2}, \mathrm{DMF} ; \mathrm{iii}, 20 \% \mathrm{HCl}, \mathrm{R}=\mathrm{Me}, \mathrm{CH}_{2} \mathrm{OH}, \mathrm{SMe}, \mathrm{Cl}, \mathrm{Br}, \mathrm{I} ; \mathrm{iv}, 20 \%$ $\mathrm{HCl}, \mathrm{R}=\mathrm{CHO} ; \mathbf{v}, \mathrm{NaBH}_{4}, \mathrm{MeOH}$

In the course of our work we intended to apply this procedure for the synthesis of isoquinoline-4-carbaldehyde 4 ($\mathrm{R}=\mathrm{CHO}$). However, cyclisation of the corresponding formyl derivative 3 ($\mathrm{R}=\mathrm{CHO}$) with 20% aqueous hydrochloric acid failed to give the expected product. Instead, 1,2-dihydroisoquinoline-3carbaldehyde 5 was obtained. The structure of compound 5 was assigned on the basis of elemental analysis, IR and NMR spectroscopy and mass spectral data. Further support for the proposed structure was provided by borohydride reduction of aldehyde 5 to afford hydroxymethyl derivative 6.
Cyclisation of type 3 acetals to isoquinolines 4 in 20\% hydrochloric acid (Bobbitt's modification of the PomeranzFritsch synthesis) is known to take place only if the aromatic site of the ring closure is sufficiently activated by electron-

[^0]donating substituents. ${ }^{2}$ The formyl derivative 3 ($\mathrm{R}=\mathrm{CHO}$) obviously does not fulfil this requirement. Nevertheless, it provides-under the same conditions-1,2-dihydroisoquino-line-3-carbaldehyde 5, by acid-catalyzed intramolecular aldol condensation.

This new isoquinoline synthesis consists of bond formation between $\mathrm{C}-3$ and $\mathrm{C}-4$ of the resulting ring. There are few reports of isoquinoline syntheses involving the formation of this bond in the course of the cyclisation. ${ }^{3}$ In contrast to classical (BischlerNapieralski, Pictet-Spengler, Pomeranz-Fritsch) isoquinoline syntheses, involving ring closure between the benzene ring and a suitable side-chain, this cyclisation is not fundamentally influenced by the aromatic substitution pattern, as demonstrated by the synthesis of derivatives 10 (Scheme 2).

Scheme 2 Reagents: i, BuLi; ii, DMF; iii, $20 \% \mathrm{HCl}$; iv, $\mathrm{NaBH}_{4}, \mathrm{MeOH}$
Lithiation of the tertiary amines 7 and subsequent quenching of aryllithiums 8 with N, N-dimethylformamide afforded the aldehydes 9 and, after cyclisation with 20% aqueous hydrochloric acid, 1,2-dihydroisoquinoline-3-carbaldehydes 10 with moderate to good yields. Sodium borohydride reduction of compounds 10 in methanol furnished 3-hydroxymethyl-1,2,3,4tetrahydroisoquinolines 11.
Compounds 5 and 10 were found to be unstable in air. ${ }^{4}$ The oxidation product was identified in one case: small amounts of isoquinolinium carboxylate $\mathbf{1 2}$ separated from stored solutions of 10 b exposed to the air.

12

Experimental

M.p.s are corrected using a calibration curve which was established with authentic standards. IR spectra were recorded on a Beckmann IR 4230 spectrometer. ${ }^{1} \mathrm{H}$ NMR spectra were obtained on Bruker WH-250 FT (250 MHz) or, if marked by an asterisk, WH-360 FT (360 MHz) spectrometers. ${ }^{13} \mathrm{C}$ NMR spectra were obtained on a Bruker WH-360 FT (90.6 MHz) spectrometer. Chemical shifts refer to the signal of $\mathrm{Me}_{4} \mathrm{Si}$, which served as the internal reference and J values are recorded in Hz . Elementary analyses were performed by the laboratory of I . Betz, D-8640 Kronach.

Synthesis of N -Arylmethyl-N-methyl-2,2-diethoxyethyl-amines.- N -(3,4-Methylenedioxybenzyl)- N -methyl-2,2-diethoxyethylamine 1. Compound 1 was prepared by the modification of a reported procedure. ${ }^{5} 40 \%$ Aqueous methylamine $\left(345 \mathrm{~cm}^{3}, 308 \mathrm{~g}, 4 \mathrm{~mol}\right)$ was added to a solution of $3,4-$ methylenedioxybenzaldehyde ($300 \mathrm{~g}, 2 \mathrm{~mol}$) in methanol (650 cm^{3}). At $0^{\circ} \mathrm{C}$, sodium borohydride ($38 \mathrm{~g}, 1 \mathrm{~mol}$) was added to the solution, and the mixture was stirred at room temperature for 1 h . The methanol was evaporated and the residue was extracted with dichloromethane $\left(300+2 \times 200 \mathrm{~cm}^{3}\right)$; the extract was dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporated. Bromoacetaldehyde diethylacetal ($347 \mathrm{~cm}^{3}, 440 \mathrm{~g}, 2.23 \mathrm{~mol}$) and sodium hydrogen carbonate ($458 \mathrm{~g}, 5.46 \mathrm{~mol}$) was added to the residue and the mixture was stirred and heated at $130^{\circ} \mathrm{C}$ for 7 h . (The reaction was monitored by TLC, eluent: methanol.) The resulting thick paste was diluted with ether ($1000 \mathrm{~cm}^{3}$) and the insoluble part was filtered off and washed with ether $\left(2 \times 500 \mathrm{~cm}^{3}\right)$. The ether was evaporated and the residue was distilled to give $1(377 \mathrm{~g}, 67 \%)$, b.p. $130-135{ }^{\circ} \mathrm{C}$ at 0.4 mmHg ; $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right)^{*} 1.21(6 \mathrm{H}, \mathrm{t}, J 7.0), 2.27(3 \mathrm{H}, \mathrm{s}), 2.55(2 \mathrm{H}, \mathrm{d}, J$ $5.4), 3.49(2 \mathrm{H}, \mathrm{s}), 3.53(2 \mathrm{H}, \mathrm{dq}, J 9.3$ and 7.0$), 3.65(2 \mathrm{H}, \mathrm{dq}$, $J 9.3$ and 7.0$)$, $4.64(1 \mathrm{H}, \mathrm{t}, J 5.4)$, $5.92(2 \mathrm{H}, \mathrm{s}), 6.74(2 \mathrm{H}, \mathrm{s})$ and $6.86(1 \mathrm{H}, \mathrm{s})$.

N -Benzyl- N -methyl-2,2-diethoxyethylamine 7a.-A mixture of N-methylbenzylamine ($100 \mathrm{~cm}^{3}, 93 \mathrm{~g}, 0.8 \mathrm{~mol}$), bromoacetaldehyde diethylacetal ($155 \mathrm{~cm}^{3}, 197 \mathrm{~g}, 1.0 \mathrm{~mol}$) and sodium hydrogen carbonate ($194 \mathrm{~g}, 2.3 \mathrm{~mol}$) was stirred and heated at $130^{\circ} \mathrm{C}$ for 8 h . The title compound $7 \mathrm{a}(159 \mathrm{~g}, 87 \%$) was prepared as described above for the compound 1, b.p. $90-95^{\circ} \mathrm{C}$ at 0.4 mmHg (lit., ${ }^{6} 149-150{ }^{\circ} \mathrm{C}$ at 19 mmHg$) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 1.19(6 \mathrm{H}, \mathrm{t}, \mathrm{J}$ $7.0), 2.29(3 \mathrm{H}, \mathrm{s}), 2.57(2 \mathrm{H}, \mathrm{d}, J 5.4), 3.49(2 \mathrm{H}, \mathrm{dq}, J 9.1$ and 7.0$)$, $3.57(2 \mathrm{H}, \mathrm{s}), 3.62(2 \mathrm{H}, \mathrm{dq}, J 9.1$ and 7.0$), 4.63(1 \mathrm{H}, \mathrm{t}, J 5.4)$ and 7.17-7.40 ($5 \mathrm{H}, \mathrm{m}$).

N -(3-Methoxybenzyl)-N-methyl-2,2-diethoxyethylamine 7b. -In an analogous fashion to that described for compound 1, 3-methoxybenzaldehyde ($61 \mathrm{~cm}^{3}, 68 \mathrm{~g}, 0.5 \mathrm{~mol}$) was converted into the title compound $7 \mathrm{bb}(101 \mathrm{~g}, 76 \%)$, b.p. $110-115^{\circ} \mathrm{C}$ at 0.1 mmHg (Found: $\mathrm{C}, 67.25 ; \mathrm{H}, 9.27 . \mathrm{C}_{15} \mathrm{H}_{25} \mathrm{NO}_{3}$ requires $\mathrm{C}, 67.39$, $\mathrm{H}, 9.42 \%) ; n_{\mathrm{D}}^{20} 1.4920 ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 1.20(6 \mathrm{H}, \mathrm{t}, J 7.0), 2.29(3 \mathrm{H}, \mathrm{s})$, $2.57(2 \mathrm{H}, \mathrm{d}, J 5.3), 3.50(2 \mathrm{H}, \mathrm{dq}, J 9.3$ and 7.0$), 3.54(2 \mathrm{H}, \mathrm{s}), 3.63$ ($2 \mathrm{H}, \mathrm{dq}, J 9.3$ and 7.0), $3.80(3 \mathrm{H}, \mathrm{s}), 4.63(1 \mathrm{H}, \mathrm{t}, J 5.3), 6.70-6.95$ ($3 \mathrm{H}, \mathrm{m}$) and $7.20(1 \mathrm{H}, \mathrm{m})$; m/z $267\left(\mathrm{M}^{+}, 2 \%\right), 222(9), 164(93)$, 121 (100), 103 (17), 91 (14) and 75 (17).

N -(4-Chlorobenzyl)- N -methyl-2,2-diethoxyethylamine 7c.-In an analogous fashion to that described for the compound 14 chlorobenzaldehyde ($28 \mathrm{~g}, 0.2 \mathrm{~mol}$) was converted into the title compound $7 \mathrm{c}\left(45.1 \mathrm{~g}, 83 \%\right.$), b.p. $120-125^{\circ} \mathrm{C}$ at 0.02 mmHg ; $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 1.20(6 \mathrm{H}, \mathrm{t}, J 7.1), 2.28(3 \mathrm{H}, \mathrm{s}), 2.56(2 \mathrm{H}, \mathrm{d}, J 5.5)$, $3.51(2 \mathrm{H}, \mathrm{dq}, J 9.3$ and 7.1$), 3.54(2 \mathrm{H}, \mathrm{s}), 3.64(2 \mathrm{H}, \mathrm{dq}, J 9.3$ and 7.1), $4.64(1 \mathrm{H}, \mathrm{t}, J 5.5)$ and $7.27(4 \mathrm{H}, \mathrm{s})$. Hydrochloride: m.p. 139-140 ${ }^{\circ} \mathrm{C}$ (decomp., from ethyl acetate) (Found: C, 54.7 ; H, 7.7. $\mathrm{C}_{14} \mathrm{H}_{23} \mathrm{Cl}_{2} \mathrm{NO}_{2}$ requires C, $\left.54.55 ; \mathrm{H}, 7.52 \%\right)$; $\delta_{\mathrm{H}}(250 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) 1.26(6 \mathrm{H}, \mathrm{t}, J 7.1 \mathrm{~Hz}), 2.80(3 \mathrm{H}, \mathrm{s}), 2.82-3.05(1 \mathrm{H}, \mathrm{m})$,
3.10-3.30 (1 H, m), 3.60-3.90 (4 H, m), $4.33(2 \mathrm{H}, \mathrm{m}), 5.29(1$ $\mathrm{H}, \mathrm{t}, J 5.1), 7.43(2 \mathrm{H}, \mathrm{d}, J 8.4)$ and 7.68 ($2 \mathrm{H}, \mathrm{d}, J 8.4$); m/z $271\left(\mathrm{M}^{+}, 1 \%\right), 226$ (20), 170 (12), 168 (34), 127 (31), 125 (100) and 103 (93).

N -(3,4-Dimethoxybenzyl)-N-methyl-2,2-diethoxyethylamine 7d. In an analogous fashion to that described for compound 1 3,4-methoxybenzaldehyde ($83 \mathrm{~g}, 0.5 \mathrm{~mol}$) was converted into the title compound $7 \mathrm{~d}(109 \mathrm{~g}, 73 \%)$, b.p. $140-145^{\circ} \mathrm{C}$ at 0.06 mmHg (lit., ${ }^{1} 142-146^{\circ} \mathrm{C}$ at 0.08 mmHg) (Found: $\mathrm{C}, 64.75 ; \mathrm{H}, 8.9$. $\mathrm{C}_{16} \mathrm{H}_{27} \mathrm{NO}_{4}$ requires $\mathrm{C}, 64.62, \mathrm{H}, 9.15 \%$); $n_{\mathrm{D}}^{20} 1.5011$; $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 1.20(6 \mathrm{H}, \mathrm{t}, J 7.0), 2.30(3 \mathrm{H}, \mathrm{s}), 2.54(2 \mathrm{H}, \mathrm{d}, J 5.3)$, $3.51(2 \mathrm{H}, \mathrm{s}), 3.52(2 \mathrm{H}, \mathrm{dq}, J 9.2$ and 7.0$), 3.63(2 \mathrm{H}, \mathrm{dq}, J 9.2$ and 7.0), $3.86(3 \mathrm{H}, \mathrm{s}), 3.88(3 \mathrm{H}, \mathrm{s}), 4.63(1 \mathrm{H}, \mathrm{t}, J 5.3), 6.78(1 \mathrm{H}, \mathrm{d}, J$ 8.2), $6.84(1 \mathrm{H}, \mathrm{dd}, J 8.2$ and 1.3) and $6.93(1 \mathrm{H}, \mathrm{d}, J 1.3) ; m / z 297$ ($\mathrm{M}^{+}, 1 \%$), 252 (2), 206 (2) 194 (15) and 151 (100).

Formylation of N -Arylmethyl- N -methyl-2,2-diethoxyethylamines 1 and 7a-d.-6-[N-(2,2-Diethoxyethyl)-N-methyl-aminomethyl]-2,3-methylenedioxybenzaldehyde $3(\mathrm{R}=\mathrm{CHO})$. At $0^{\circ} \mathrm{C}$, a solution ($1.5 \mathrm{~mol} \mathrm{dm}{ }^{-3} ; 73.3 \mathrm{~cm}^{3}$) of butyllithium (110 mmol) in hexane was added rapidly to a solution of compound $1(28.1 \mathrm{~g}, 100 \mathrm{mmol})$ in ether ($150 \mathrm{~cm}^{3}$). After 1 h , N, N-dimethylformamide ($11.6 \mathrm{~cm}^{3}, 11.0 \mathrm{~g}, 150 \mathrm{mmol}$) was added to the suspension, and the mixture was stirred for 1 h at room temperature. It was then extracted with saturated aqueous ammonium chloride ($50 \mathrm{~cm}^{3}$) and saturated brine ($2 \times 20 \mathrm{~cm}^{3}$), dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporated. Trituration with light petroleum (b.p. $40-60^{\circ} \mathrm{C}$) gave $5(20.6 \mathrm{~g}, 66 \%)$, m.p. $54-55^{\circ} \mathrm{C}$ [from light petroleum (b.p. $40-60^{\circ} \mathrm{C}$)] (Found: C, $62.15 ; \mathrm{H}, 7.7 . \mathrm{C}_{16} \mathrm{H}_{23} \mathrm{NO}_{5}$ requires $\mathrm{C}, 62.11, \mathrm{H}, 7.49 \%$); $v_{\text {max }}(\mathrm{K} \mathrm{Br}) / \mathrm{cm}^{-1} 1673 ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right)^{*} 1.17(6 \mathrm{H}, \mathrm{t}, J 7.0), 2.23$ (3 $\mathrm{H}, \mathrm{s}), 2.57(2 \mathrm{H}, \mathrm{d}, J 5.1), 3.49(2 \mathrm{H}, \mathrm{dq}, J 9.0$ and 7.0$)$, 3.62 (2 $\mathrm{H}, \mathrm{dq}, J 9.0$ and 7.0$), 3.77(2 \mathrm{H}, \mathrm{s}), 4.57(1 \mathrm{H}, \mathrm{t}, J 5.1), 6.12$ (2 $\mathrm{H}, \mathrm{s}), 6.81(1 \mathrm{H}, \mathrm{d}, J 7.8), 6.89(1 \mathrm{H}, \mathrm{d}, J 7.8)$ and $10.42(1 \mathrm{H}$, s); $m / z 309$ (M ${ }^{+}, 6 \%$), 264 (6), 206 (58), 163 (100), 135 (7), 103 (11) and 77 (23).

2-[N -(2,2-Diethoxyethyl)- N -methylaminomethyl]benzaldehyde 9 a. A solution ($1.5 \mathrm{~mol} \mathrm{dm}^{-3} ; 100 \mathrm{~cm}^{3}$) of butyllithium (150 $\mathrm{mmol})$ in hexane was added to a solution of $7 \mathrm{a}(23.7 \mathrm{~g}, 100$ mmol) in ether ($100 \mathrm{~cm}^{3}$) and the mixture was kept for 48 h at $25^{\circ} \mathrm{C}$. N, N-Dimethylformamide ($15.4 \mathrm{~cm}^{3}, 14.6 \mathrm{~g}, 200 \mathrm{mmol}$) was added at $0^{\circ} \mathrm{C}$. After 30 min at $25^{\circ} \mathrm{C}$, saturated aqueous ammonium chloride ($50 \mathrm{~cm}^{3}$) was added. The organic phase was extracted with saturated brine $\left(2 \times 20 \mathrm{~cm}^{3}\right)$, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporated. The residue was distilled at 0.03 mmHg and the fraction boiling at $120-125^{\circ} \mathrm{C}$ was collected to give crude $9 \mathrm{a}\left(14.6 \mathrm{~g}, 55 \%\right.$); $v_{\text {max }}(\mathrm{KBr}) / \mathrm{cm}^{-1} 1690 ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right)$ $1.19(6 \mathrm{H}, \mathrm{t}, J 7.0) .2 .25(3 \mathrm{H}, \mathrm{s}), 2.60(2 \mathrm{H}, \mathrm{d}, J 5.4), 3.48(2 \mathrm{H}, \mathrm{dq}$, $J 9.1$ and 7.0$), 3.62(2 \mathrm{H}, \mathrm{dq}, J 9.1$ and 7.0$), 3.88(2 \mathrm{H}, \mathrm{s}), 4.59(1 \mathrm{H}$, $\mathrm{t}, J 5.4), 6.93-7.56(3 \mathrm{H}, \mathrm{m}), 7.85-7.93(1 \mathrm{H}, \mathrm{m})$ and $10.50(1 \mathrm{H}, \mathrm{s})$. The purity of the compound was judged to be $c a .90 \%$ by ${ }^{1} \mathrm{H}$ NMR determinations. It was used for the next reaction without further purification.

2-[N -(2,2-Diethoxyethyl)-N-methylaminomethyl]-6-methoxybenzaldehyde 9b. Crude oily 9b ($28.1 \mathrm{~g}, 95 \%$; purity $>95 \%$, as indicated by ${ }^{1}$ H NMR) was obtained starting from $7 \mathrm{bb}(26.7 \mathrm{~g}$, 100 mmol) and proceeding as described for $3(\mathrm{R}=\mathrm{CHO})$; $v_{\text {max }}(\mathrm{KBr}) / \mathrm{cm}^{-1} 1687 ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 1.20(6 \mathrm{H}, \mathrm{t}, J 7.1), 2.29(3 \mathrm{H}$, s), $2.60(2 \mathrm{H}, \mathrm{d}, J 5.3), 3.50(2 \mathrm{H}, \mathrm{dq}, J 9.5$ and 7.1$), 3.64(2 \mathrm{H}, \mathrm{dq}, J$ 9.5 and 7.1$), 3.87(2 \mathrm{H}, \mathrm{s}), 3.88(3 \mathrm{H}, \mathrm{s}), 4.62(1 \mathrm{H}, \mathrm{t}, J 5.3), 6.87$ $(1 \mathrm{H}, \mathrm{d}, J 7.9) 7.23(1 \mathrm{H}, \mathrm{d}, J 8.2), 7.43(1 \mathrm{H}, \mathrm{t}, J 8.2)$ and 10.57 ($1 \mathrm{H}, \mathrm{s}$).

2-[N-(2,2-Diethoxyethyl)-N-methylaminomethyl]-5-chlorobenzaldehyde 9 c . At $0^{\circ} \mathrm{C}$, a solution ($1.5 \mathrm{~mol} \mathrm{dm}^{-3} ; 20 \mathrm{~cm}^{3}$) of butyllithium (30 mmol) in hexane was added to a solution of 7 c ($5.44 \mathrm{~g}, 20 \mathrm{mmol}$) in ether ($60 \mathrm{~cm}^{3}$). It was kept for 3 h at $0^{\circ} \mathrm{C}$, and N, N-dimethylformamide ($4.62 \mathrm{~cm}^{3}, 4.38 \mathrm{~g}, 60 \mathrm{mmol}$) was added. After 15 min at room temperature, saturated aqueous
ammonium chloride $\left(20 \mathrm{~cm}^{3}\right)$ was added, and the organic layer was extracted with saturated brine $\left(2 \times 20 \mathrm{~cm}^{3}\right)$, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporated. Oily $\mathbf{9 c}(5.8 \mathrm{~g}, 97 \%$, purity $>95 \%$ as shown by ${ }^{1} \mathrm{H}$ NMR) was obtained; $v_{\max }($ film $) / \mathrm{cm}^{-1} 1687$; $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 1.21(6 \mathrm{H}, \mathrm{t}, J 7.0), 2.21(3 \mathrm{H}, \mathrm{s}), 2.59(2 \mathrm{H}, \mathrm{d}, J 5.4)$, $3.49(2 \mathrm{H}, \mathrm{dq}, J 9.2$ and 7.0$), 3.63(2 \mathrm{H}, \mathrm{dq}, J 9.2$ and 7.0$), 3.86(2$ $\mathrm{H}, \mathrm{s}), 4.60(1 \mathrm{H}, \mathrm{t}, J 5.4)$, $7.33(1 \mathrm{H}, \mathrm{d}, J 8.3)$, $7.46(1 \mathrm{H}, \mathrm{dd}, J 8.3$ and 2.1$), 7.84(1 \mathrm{H}, \mathrm{d}, J 2.1)$ and $10.45(1 \mathrm{H}, \mathrm{s})$.

2-[N-(2,2-Diethoxyethyl)-N-methylaminomethyl]-5,6dimethoxybenzaldehyde 9 d . Oily $9 \mathrm{~d}(31.1 \mathrm{~g}, 97 \%$, purity ca. 90% as shown by ${ }^{1} \mathrm{H}$ NMR) was obtained starting from $7 \mathrm{~d}(29.7 \mathrm{~g}$, 100 mmol) and proceeding as described for $3(\mathrm{R}=\mathrm{CHO})$, $v_{\max }($ film $) / \mathrm{cm}^{-1} 1690 ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 1.20(6 \mathrm{H}, \mathrm{t}, J 7.0), 2.27(3 \mathrm{H}, \mathrm{s})$, $2.58(2 \mathrm{H}, \mathrm{d}, J 5.3), 3.50(2 \mathrm{H}, \mathrm{dq}, J 9.3$ and 7.0$), 3.64(2 \mathrm{H}, \mathrm{dq}, J$ 9.3 and 7.0), $3.77(2 \mathrm{H}, \mathrm{s}), 3.88(3 \mathrm{H}, \mathrm{s}), 3.91(3 \mathrm{H}, \mathrm{s}), 4.61(1 \mathrm{H}, \mathrm{t}, J$ 5.3), 7.02 ($1 \mathrm{H}, \mathrm{d}, J 8.5$), $7.23(1 \mathrm{H}, \mathrm{d}, J 8.5)$ and $10.51(1 \mathrm{H}, \mathrm{s})$.

Compounds $9 \mathrm{a}-\mathrm{d}$ were used for the next reaction without further purification.

1,2-Dihy'droisoquinoline-3-carbaldehydes 5 and 10a-d: General Procedure.-Compounds 3 ($\mathrm{R}=\mathrm{CHO}$) and $9 \mathbf{a - d}(20$ mmol) were dissolved in hydrochloric acid $\left(20 \%, 40 \mathrm{~cm}^{3}\right)$ and the solution stored for 16 h at room temperature. The solution was then treated with charcoal and its pH adjusted to 14 with 40% aqueous sodium hydroxide in such a manner that the temperature of the mixture did not rise above $40^{\circ} \mathrm{C}$.

2-Methyl-5,6-methylenedioxy-1,2-dihydroisoquinoline-3-carbaldehyde 5. A yellow crystalline product separated, which was filtered off, washed with water and dried over potassium hydroxide to give the title compound 5 ($3.8 \mathrm{~g}, 88 \%$), m.p. 108$110^{\circ} \mathrm{C}$ (decomp.). In some runs further purification was carried out by filtration through silica gel (80 g) with ethyl acetate-light petroleum (b.p. $40-60^{\circ} \mathrm{C}$) $(1: 4)$ as the eluent. Evaporation of the solvents at ambient temperature and trituration of the residue with water gave analytically pure $5(2.90 \mathrm{~g}, 67 \%)$, m.p. $111-$ $112{ }^{\circ} \mathrm{C}$ [decomp., from dichloromethane-light petroleum (b.p. $40-60^{\circ} \mathrm{C}$)] (Found: $\mathrm{C}, 66.3 ; \mathrm{H}, 5.2 . \mathrm{C}_{12} \mathrm{H}_{11} \mathrm{NO}_{3}$ requires C , 66.35; $\mathrm{H}, 5.10 \%$); $v_{\text {max }}(\mathrm{KBr}) / \mathrm{cm}^{-1} 1670 ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right)^{*} 3.12(3 \mathrm{H}$, s), $4.17(2 \mathrm{H}, \mathrm{s}), 5.98(2 \mathrm{H}, \mathrm{s}), 6.26(1 \mathrm{H}, \mathrm{s}), 6.48(1 \mathrm{H}, \mathrm{d}, J 7.8), 6.67$ $(1 \mathrm{H}, \mathrm{d}, J 7.8)$ and $9.20(1 \mathrm{H}, \mathrm{s}) ; \delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right) 38.5,55.2,101.4$, 108.3, 114.8, 115.4, 117.8, 123.3, 142.6, 144.6, 146.8 and 188.2; $m / z 217\left(\mathrm{M}^{+}, 55 \%\right), 216$ (100), 188 (3) and 130 (8).

2-Methyl-1,2-dihydroisoquinoline-3-carbaldehyde 10a. The mixture was extracted with dichloromethane $(50+2 \times 20$ cm^{3}) and the combined extracts were dried, concentrated (without heating!) and filtered through silica gel (80 g) with ethyl acetate-light petroleum (b.p. $40-60{ }^{\circ} \mathrm{C}$) $(1: 4)$ as the eluent. The solution was evaporated at ambient temperature. The residue was dissolved in a minimum quantity of ethyl acetate. Addition of light petroleum (b.p. $40-60^{\circ} \mathrm{C}$) gave the yellow crystalline title compound $10 \mathrm{a}(1.80 \mathrm{~g}, 52 \%$), m.p. 66$67{ }^{\circ} \mathrm{C}$ (Found: $\mathrm{C}, 76.0 ; \mathrm{H}, 6.2 . \mathrm{C}_{11} \mathrm{H}_{1}, \mathrm{NO}$ requires $\mathrm{C}, 76.28, \mathrm{H}$, 6.40%); $v_{\text {max }}(\mathrm{KBr}) / \mathrm{cm}^{-1} 1680 ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 3.12(3 \mathrm{H}, \mathrm{s}), 4.28(2 \mathrm{H}$, s), $6.24(1 \mathrm{H}, \mathrm{s}), 6.98-7.30(4 \mathrm{H}, \mathrm{m})$ and $9.22(1 \mathrm{H}, \mathrm{s}) ; m / z 173$ $\left(\mathrm{M}^{+}, 42 \%\right), 172(100), 149(38), 143$ (17), 128 (18) and 115 (24).

5-Methoxy-2-methyl-1,2-dihydroisoquinoline-3-carbaldehyde 10b. The crystalline precipitate was filtered off, washed with water, dried over potassium hydroxide and dissolved in dichloromethane ($5 \mathrm{~cm}^{3}$). The solution was filtered through silica gel (80 g) with ethyl acetate-light petroleum (b.p. $40-$ $\left.60^{\circ} \mathrm{C}\right)(1: 4)$ as the eluent. Evaporation of the solvents at ambient temperature and subsequent trituration of the residue with water ($20 \mathrm{~cm}^{3}$) gave the yellow product $10 \mathrm{~b}(1.46 \mathrm{~g}, 36 \%)$, m.p. 64-65 ${ }^{\circ} \mathrm{C}$ (Found: $\mathrm{C}, 71.2, \mathrm{H}, 6.4 . \mathrm{C}_{12} \mathrm{H}_{13} \mathrm{NO}_{2}$ requires C , $70.92, \mathrm{H}, 6.45 \%$); $v_{\text {max }}(\mathrm{KBr}) / \mathrm{cm}^{-1} 1665 ; \delta_{\mathrm{H}}\left(\mathrm{CD}_{3} \mathrm{OD}\right) 3.00(3 \mathrm{H}$, s), $3.82(3 \mathrm{H}, \mathrm{s}), 4.13(2 \mathrm{H}, \mathrm{s}), 6.63(1 \mathrm{H}, \mathrm{s}), 6.63(1 \mathrm{H}, \mathrm{d}, J 7.1), 6.80$ $(1 \mathrm{H}, \mathrm{d}, J 8.5), 7.20(1 \mathrm{H}, \mathrm{t}, J 8.3)$ and $9.13(1 \mathrm{H}, \mathrm{s}) ; m / z 203$ $\left(\mathrm{M}^{+}, 46 \%\right), 202(100), 187(18)$ and $173(6)$.

6-Chloro-2-methyl-1,2-dihydroisoquinoline-3-carbaldehyde
10c. The mixture was extracted with dichloromethane $(50+$ $2 \times 20 \mathrm{~cm}^{3}$) and the combined extracts were dried, concentrated (without heating!) and filtered through silica gel $(80 \mathrm{~g})$ with ethyl acetate-light petroleum (b.p. $40-60^{\circ} \mathrm{C}$) ($1: 4$) as the eluent. The solvents were evaporated at ambient temperature. The residue was dissolved in a minimum quantity of ethyl acetate. Addition of light petroleum (b.p. $40-60^{\circ} \mathrm{C}$) gave yellow crystalline title compound $10 \mathrm{c}(1.91 \mathrm{~g}, 46 \%)$, m.p. $68-69^{\circ} \mathrm{C}$ (Found: $\mathrm{C}, 63.85, \mathrm{H}, 4.91 . \mathrm{C}_{11} \mathrm{H}_{10} \mathrm{ClNO}$ requires C , $63.62, \mathrm{H}, 4.85 \%$); $v_{\max }(\mathrm{KBR}) / \mathrm{cm}^{-1} 1668 ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 3.12(3 \mathrm{H}, \mathrm{s})$, $4.26(2 \mathrm{H}, \mathrm{s}), 6.08(1 \mathrm{H}, \mathrm{s}), 6.92(1 \mathrm{H}, \mathrm{d}, J 8.0), 7.07(1 \mathrm{H}, \mathrm{d}, J 2.2)$, $7.17\left(1 \mathrm{H}, \mathrm{dd}, J 8.0\right.$ and 2.2) and $9.20(1 \mathrm{H}, \mathrm{s}) ; m / z 209\left(\mathrm{M}^{+}, 15 \%\right)$, 208 (39), 207 (41) and 206 (10).

5,6-Dimethoxy-2-methyl-1,2-dihydroisoquinoline-3-carbaldehyde 10 d . The crystalline precipitate was filtered off, washed with water, dried over potassium hydroxide and dissolved in dichloromethane ($5 \mathrm{~cm}^{3}$). The solution was filtered through silica gel (80 g) with ethyl acetate-light petroleum (b.p. $40-$ $\left.60^{\circ} \mathrm{C}\right)(1: 4)$ as the eluent. Evaporation of the solvents at ambient temperature and subsequent trituration of the residue with water $\left(20 \mathrm{~cm}^{3}\right)$ gave the product $10 \mathrm{~d}(1.92 \mathrm{~g}, 41 \%)$, m.p. 69 $70^{\circ} \mathrm{C}$ (Found: $\mathrm{C}, 67.05, \mathrm{H}, 6.3 . \mathrm{C}_{13} \mathrm{H}_{15} \mathrm{NO}_{3}$ requires $\mathrm{C}, 66.94$, $\mathrm{H}, 6.48 \%) ; v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 1665 ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 3.11(3 \mathrm{H}, \mathrm{s}), 3: 84$ ($3 \mathrm{H}, \mathrm{s}$), $3.85(3 \mathrm{H}, \mathrm{s}), 4.18(2 \mathrm{H}, \mathrm{s}), 6.53(1 \mathrm{H}, \mathrm{s}), 6.72(1 \mathrm{H}, \mathrm{dd}, J 8.2$ and 0.8$), 6.80(1 \mathrm{H}, \mathrm{d}, J 8.2)$ and $9.25(1 \mathrm{H}, \mathrm{s}) ; m / z 233\left(\mathrm{M}^{+}, 60 \%\right)$, 232 (100), 217 (19) and 188 (23).

3-Hydroxymethyl-1,2,3,4-tetrahydroisoquinolines 6 and 11ad: General procedure.-At $0^{\circ} \mathrm{C}$, sodium borohydride ($0.38 \mathrm{~g}, 10$ mmol) was added to a solution of the corresponding 1,2-dihydroisoquinoline-3-carbaldehyde derivative (5 and 10a-d, respectively; 5 mmol) in methanol ($10 \mathrm{~cm}^{3}$). The mixture was stirred for 30 min and evaporated. The residue was triturated with water $\left(10 \mathrm{~cm}^{3}\right)$ and crystalline product was filtered off and washed with water $\left(2 \times 10 \mathrm{~cm}^{3}\right)$.

3-Hydroxymethyl-2-methyl-5,6-methylenedioxy-1,2,3,4-tetrahydroisoquinoline $6\left(0.99 \mathrm{~g}, 90 \%\right.$), m.p. $160-161^{\circ} \mathrm{C}$ (from methanol) (Found: $\mathrm{C}, 65.2, \mathrm{H}, 6.9 . \mathrm{C}_{12} \mathrm{H}_{15} \mathrm{NO}_{3}$ requires C , $65.14, \mathrm{H}, 6.83 \%$; $v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 3105 \mathrm{br} ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 2.39$ ($3 \mathrm{H}, \mathrm{s}$), $2.53(1 \mathrm{H}$, dd, $J 16.9$ and 8.1$), 2.70(1 \mathrm{H}, \mathrm{dd}, J 16.9$ and 5.2), $2.93(1 \mathrm{H}, \mathrm{m}), 3.47(1 \mathrm{H}, \mathrm{s}, \mathrm{br}), 3.58(1 \mathrm{H}, \mathrm{dd}, J 11.0$ and 7.5$)$, $3.64(1 \mathrm{H}, \mathrm{d}, J 16.1), 3.70(1 \mathrm{H}, \mathrm{dd}, J 11.0$ and 4.9$), 3.84(1 \mathrm{H}, \mathrm{d}, J$ 16.1), $5.93(2 \mathrm{H}, \mathrm{m}), 6.53(1 \mathrm{H}, \mathrm{d}, J 8.0)$ and $6.67(1 \mathrm{H}, \mathrm{d}, J 8.0)$; $m / z 221\left(\mathrm{M}^{+}, 6 \%\right), 190(100), 160(10), 149(17), 132(10), 115(8)$, 103 (8) and 91 (32).

3-Hydroxymethyl-2-methyl-1,2,3,4-tetrahydroisoquinoline 11a. $\left(0.67 \mathrm{~g}, 76 \%\right.$), m.p. $103-104^{\circ} \mathrm{C}$ (from heptane) ${ }^{8}$ (Found: C , $74.85, \mathrm{H}, 8.5 . \quad \mathrm{C}_{11} \mathrm{H}_{15} \mathrm{NO}$ requires $\mathrm{C}, 74.54, \mathrm{H}, 8.52 \%$); $v_{\text {max }}(\mathrm{KBr}) / \mathrm{cm}^{-1} \quad 3140 ; \delta_{\mathbf{H}}\left(\mathrm{CDCl}_{3}\right) 2.41(3 \mathrm{H}, \mathrm{s}), 2.71-2.90$ ($3 \mathrm{H}, \mathrm{m}$), $2.94(1 \mathrm{H}, \mathrm{s}, \mathrm{br}), 3.52(1 \mathrm{H}, \mathrm{dd}, J 11.1$ and 5.3$), 3.70(1 \mathrm{H}, \mathrm{d}$, $J 16.3), 3.70(1 \mathrm{H}$, dd, $J 11.1$ and 4.6$), 3.93(1 \mathrm{H}, \mathrm{d}, J 16.3)$ and 6.98-7.20 (4 H, m); m/z (chemical ionisation with ammonia) 178 $(\mathrm{M}+1,100 \%), 176$ (26) and 146 (18).

3-Hydroxymethyl-5-methoxy-2-methyl-1,2,3,4-tetrahydroisoquinoline $11 \mathrm{~b} .\left(0.85 \mathrm{~g}, 82 \%\right.$), m.p. $96-97^{\circ} \mathrm{C}$ (from heptane-ethyl acetate) (Found: $\mathrm{C}, 69.9 ; \mathrm{H}, 8.25 . \mathrm{C}_{12} \mathrm{H}_{17} \mathrm{NO}_{2}$ requires $\mathrm{C}, 69.54$, $\mathrm{H}, 8.27 \%$); $v_{\text {max }}(\mathrm{KBr}) / \mathrm{cm}^{-1} 3140 \mathrm{br} ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 2.39(3 \mathrm{H}, \mathrm{s}), 2.50$ (1 H , dd, $J 17.4$ and 8.6), $2.70(1 \mathrm{H}$, dd, $J 17.4$ and 5.1$), 2.88(1 \mathrm{H}$, $\mathrm{m}), 2.95(1 \mathrm{H}, \mathrm{s}, \mathrm{br}), 3.58(1 \mathrm{H}, \mathrm{dd}, J 11.2$ and 7.1$), 3.65-3.75(2 \mathrm{H}$, s), $3.80(3 \mathrm{H}, \mathrm{s}), 3.86(1 \mathrm{H}, \mathrm{d}, J 16.2), 6.67(1 \mathrm{H}, \mathrm{d}, J 7.0), 6.70(1 \mathrm{H}$, $\mathrm{d}, J 8.0)$ and $7.12(1 \mathrm{H}, \mathrm{t}, J 8.2)$; m / z (chemical ionisation with ammonia) 208 (M+1,100\%) and 176 (17\%).

6-Chloro-3-hydroxymethyl-2-methyl-1,2,3,4-tetrahydroisoquinoline $11 \mathrm{c} .(0.76 \mathrm{~g}, 72 \%)$, m.p. $75-76^{\circ} \mathrm{C}$ (from ethyl acetatelight petroleum) (Found: $\mathrm{C}, 62.7, \mathrm{H}, 6.7 . \mathrm{C}_{11} \mathrm{H}_{14} \mathrm{ClNO}$ requires $\mathrm{C}, 62.41, \mathrm{H}, 6.67 \%)$; $v_{\text {max }}(\mathrm{KBr}) / \mathrm{cm}^{-1} 3160 ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 2.40(3 \mathrm{H}$, s), 2.65-2.90 (4 H, m), 3.57 (1 H, dd, J 11.0 and 6.2), $3.63(1 \mathrm{H}, \mathrm{d}$,
$J 16.2$), $3.70(1 \mathrm{H}, \mathrm{dd}, J 11.0$ and 4.5$), 3.84(1 \mathrm{H}, \mathrm{d}, J 16.2), 6.95$ ($1 \mathrm{H}, \mathrm{d}, J 8.0$) and 7.05-7.17 ($2 \mathrm{H}, \mathrm{m}$); m / z (chemical ionisation with ammonia) $214(\mathrm{M}+1,3 \%), 212$ (9), 182 (30) and 180 (100).

3-Hydroxymethyl-5,6-dimethoxy-2-methyl-1,2,3,4-tetrahydroisoquinoline 11d. $\left(0.84 \mathrm{~g}, 71 \%\right.$), m.p. $105-106{ }^{\circ} \mathrm{C}$ (from heptane) (Found: C, $65.65 ; \mathrm{H}, 7.96 . \mathrm{C}_{13} \mathrm{H}_{19} \mathrm{NO}_{3}$ requires C , $65.80, \mathrm{H}, 8.07 \%) ; v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 3140 \mathrm{br} ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 2.38(3 \mathrm{H}$, s), $2.63(1 \mathrm{H}, \mathrm{dd}, J 18.2$ and 9.8$), 2.70-2.90(3 \mathrm{H}, \mathrm{m}), 3.58(1 \mathrm{H}, \mathrm{dd}$, $J 10.8$ and 6.2), $3.64(1 \mathrm{H}, \mathrm{d}, J 15.5) 3.73$ ($1 \mathrm{H}, \mathrm{dd}, J 10.8$ and 4.4), $3.80(3 \mathrm{H}, \mathrm{s}), 3.82(1 \mathrm{H}, \mathrm{d}, J 15.5), 3.85(3 \mathrm{H}, \mathrm{s})$ and $6.77(2 \mathrm{H}, \mathrm{s})$; m / z (chemical ionisation with ammonia) $238(\mathrm{M}+1,100 \%)$ and $206(26 \%)$.

Oxidation Product: 5-Methoxy-2-methylisoquinolinium-3-carboxylate 12.-In some runs small amounts of colourless crystalline compound 12 separated from the solutions of the aldehyde 11b, m.p. 199-200 ${ }^{\circ} \mathrm{C}$ (from ethanol); $\delta_{\mathrm{H}}\left(\mathrm{D}_{2} \mathrm{O}\right) 3.96$ (3 H, s), 4.49 ($3 \mathrm{H}, \mathrm{s}$), 7.28 ($1 \mathrm{H}, \mathrm{d}, J 7.8$), 7.58 ($1 \mathrm{H}, \mathrm{d}, J 7.8$), 7.72 (1 $\mathrm{H}, \mathrm{t}, J 7.8), 8.19(1 \mathrm{H}, \mathrm{s})$ and $9.30(1 \mathrm{H}, \mathrm{s})$. Hydrochloride: m.p. $199-200^{\circ} \mathrm{C}$ (decomp., from ethanol) (Found: C, 56.8; H, 4.7. $\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{ClNO}_{3}$ requires $\mathrm{C}, 56.82, \mathrm{H}, 4.77 \%$); $v_{\text {max }}(\mathrm{KBr}) / \mathrm{cm}^{-1}$ 1747; $\delta_{\mathrm{H}}\left(\mathrm{D}_{2} \mathrm{O}\right) 4.01(3 \mathrm{H}, \mathrm{s}), 4.61(3 \mathrm{H}, \mathrm{s}), 7.45(1 \mathrm{H}, \mathrm{d}, J 8.1), 7.78$ $(1 \mathrm{H}, \mathrm{d}, J 8.1), 7.92(1 \mathrm{H}, \mathrm{t}, J 8.1), 8.56(1 \mathrm{H}, \mathrm{s})$ and $9.55(1 \mathrm{H}, \mathrm{s})$.

Acknowledgements

The author expresses his gratitude to Professor Manfred Schlosser for support (through grants of the Schweizerische Nationalfonds zur Foerderung der wissenschaftlichen Forschung, Bern).

References

1 Gy. Simig, M. Schlosser, Tetrahedron Lett., 1990, 31, 3125.
2 J. M. Bobbitt, Adv. Heterocycl. Chem., 1973, 15, 99.
3 T. J. Kametani, K. Fukumoto, in The Chemistry of Heterocyclic Compounds, ed. G. Grethe, J. Wiley \& Sons, New York, 1981, vol. 38, p. 139.
4 Jia-Ming Liu, Jenn-Jong Young, Yu-Jang Li and Chin-Kang Sha, J. Org. Chem., 1986, 51, 1120.

5 P. C. Young and R. Robinson, J. Chem. Soc., 1933, 275.
6 M. Chastrette, Ann. Chim. (Paris), 1962, 7, 643 (Chem. Abstr. 1963, 58, 12494d).
7 B. Leseche, J. Gilbert and C. Viel: J. Heterocycl. Chem., 1981, 18, 143. 8 For the preparation of $(R)-11 \mathrm{a}$, see: T. Wakabayashi and K. Watanabe, Tetrahedron Lett., 1977, 18, 4595.

Paper 2/01047J
Received 27th February 1992
Accepted 16th March 1992

[^0]: * Present address: H-1126. Budapest, Hollósy S. u. 25.

